Wednesday, 24 February 2016

Mathematics terms

 Mathematics terms


mathematics -
                     a science (or group of related sciences) dealing with the logic of quantity and shape and arrangement.


≡math, maths


↔rounding, rounding error - (mathematics)
                                                           a miscalculation that results from rounding off numbers to a convenient number of decimals; "the error in the calculation was attributable to rounding"; "taxes are rounded off to the nearest dollar but the rounding error is surprisingly small".


↔truncation error - (mathematics)
                                               a miscalculation that results from cutting off a numerical calculation before it is finished.


↔mathematical operation, mathematical process, operation - (mathematics)
                                              calculation by mathematical methods; "the problems at the end of the chapter demonstrated the mathematical processes involved in the derivation"; "they were learning the basic operations of arithmetic".


↔rationalisation, rationalization - (mathematics)
                                                                       the simplification of an expression or equation by eliminating radicals without changing the value of the expression or the roots of the equation.


↔invariance -
                    the nature of a quantity or property or function that remains unchanged when a given transformation is applied to it; "the invariance of the configuration under translation".


↔accuracy - (mathematics)
                                     the number of significant figures given in a number; "the atomic clock enabled scientists to measure time with much greater accuracy".


↔symmetricalness, symmetry, correspondence, balance - (mathematics)
                                                                                                      an attribute of a shape or relation; exact reflection of form on opposite sides of a dividing line or plane.


↔asymmetry, dissymmetry, imbalance - (mathematics)
                                                                          a lack of symmetry.



↔factoring, factorisation, factorization - (mathematics)
                                                                            the resolution of an entity into factors such that when multiplied together they give the original entity.


↔extrapolation - (mathematics)
                                                calculation of the value of a function outside the range of known values.


↔interpolation - (mathematics)
                                              calculation of the value of a function between the values already known.


↔formula, rule - (mathematics)
                                           a standard procedure for solving a class of mathematical problems; "he determined the upper bound with Descartes' rule of signs"; "he gave us a general formula for attacking polynomials".


↔recursion - (mathematics)
                                        an expression such that each term is generated by repeating a particular mathematical operation.


↔invariant -
                  a feature (quantity or property or function) that remains unchanged when a particular transformation is applied to it
↔multinomial, polynomial - a mathematical function that is the sum of a number of terms.


↔series - (mathematics)
                                the sum of a finite or infinite sequence of expressions.



↔infinitesimal - (mathematics)
                                             a variable that has zero as its limit.


↔fractal - (mathematics)
                                      a geometric pattern that is repeated at every scale and so cannot be represented by classical geometry.


↔science, scientific discipline -
                                               a particular branch of scientific knowledge; "the science of genetics".


↔pure mathematics -
                             the branches of mathematics that study and develop the principles of mathematics for their own sake rather than for their immediate usefulness.


↔arithmetic -
                                the branch of pure mathematics dealing with the theory of numerical calculations.


↔geometry -
                 the pure mathematics of points and lines and curves and surfaces.


↔affine geometry -
                           the geometry of affine transformations.


↔elementary geometry, Euclidean geometry, parabolic geometry - (mathematics)
                        geometry based on Euclid's axioms.


↔Euclidean axiom, Euclid's axiom, Euclid's postulate - (mathematics)
                                                                                             any of five axioms that are generally recognized as the basis for Euclidean geometry.


↔fractal geometry - (mathematics)
                                                   the geometry of fractals; "Benoit Mandelbrot pioneered fractal geometry".


↔non-Euclidean geometry - (mathematics)
                                                             geometry based on axioms different from Euclid's; "non-Euclidean geometries discard or replace one or more of the Euclidean axioms".


↔hyperbolic geometry - (mathematics)
                                                      a non-Euclidean geometry in which the parallel axiom is replaced by the assumption that through any point in a plane there are two or more lines that do not intersect a given line in the plane; "Karl Gauss pioneered hyperbolic geometry".


↔elliptic geometry, Riemannian geometry - (mathematics)
                                                                                a non-Euclidean geometry that regards space as like a sphere and a line as like a great circle; "Bernhard Riemann pioneered elliptic geometry".


↔numerical analysis - (mathematics)
                                                         the branch of mathematics that studies algorithms for approximating solutions to problems in the infinitesimal calculus.


↔spherical geometry - (mathematics)
                                                      the geometry of figures on the surface of a sphere.


↔spherical trigonometry - (mathematics)
                                                   the trigonometry of spherical triangles.


↔analytic geometry, analytical geometry, coordinate geometry -
                                                                                           the use of algebra to study geometric properties; operates on symbols defined in a coordinate system.

↔plane geometry -
                          the geometry of 2-dimensional figures.

↔solid geometry -
                          the geometry of 3-dimensional space.

No comments:

Post a Comment